Digitale Zwillinge und ihr Potenzial für sichere Betriebstechnik (OT)

Ein digitaler Zwilling ist ein virtuelles Abbild eines realen Systems oder Geräts. Er begleitet sein physisches Gegenstück während seines gesamten Lebenszyklus. Tests, Optimierungsverfahren und Fehlersuche können zunächst auf dem Zwilling durchgeführt werden, ohne die eigentliche Anlage (die zu diesem Zeitpunkt vielleicht noch gar nicht existiert) einzubeziehen. In diesem Artikel möchte ich Ihnen einige Empfehlungen geben, wie Sie dieses Potenzial nutzen können, um den Stand der OT-Sicherheit (Operational Technology Security) zu verbessern, z. B. in der Fertigungs- oder Gebäudeautomatisierung.

Hoffnung auf bessere und sicherere OT-Systeme

Sicherheit gewährleisten bedeutet häufig, dass Sicherheitstests durchgeführt oder neue Sicherheitskontrollen für ein System eingeführt werden. Die Aufrechterhaltung eines hohen oder zumindest ausreichenden Sicherheitsniveaus ist eine Herausforderung, vor allem, wenn das geschützte System über einen langen Zeitraum im Feld betrieben werden muss, z. B. bis zu 25 und mehr Jahre in der Fertigungsindustrie. Ein digitaler Zwilling kann hier die Lösung sein: Er ermöglicht die Durchführung vieler simulierter Sicherheitstests, ohne dabei auf das reale System zugreifen zu müssen [1]. Diese Sicherheitstests können automatische, periodische Tests oder Penetrations- und Systemtests umfassen. Ein System kann auf Fehlkonfigurationen in der Hard- und Software geprüft werden. Die Durchführung dieser Tests am digitalen Zwilling bietet den Vorteil, dass genauer eingeschätzt werden kann, wie sich das System in der Realität verhalten könnte. Außerdem hat eine Beschädigung des digitalen Zwillings keine Auswirkungen auf den Betrieb, da der Zwilling einfach zurückgesetzt werden kann. Ein weiterer Anwendungsfall für digitale Zwillinge in der OT-Sicherheit sind Systeme zur Erkennung und Vermeidung von Angriffen (eng. Intrusion-Detection- und Intrusion-Prevention-Systems), die Netzwerke auf bösartige Aktivitäten überwachen. Für das Training ihrer Erkennungsmechanismen sind große Datenmengen erforderlich, die digitale Zwillinge produzieren und somit beim Training der Intrusion-Detection-Systeme vor ihrem Einsatz helfen können.

Echte Digital Twins sind schwer zu finden

Dennoch sind die Einsatzfelder digitaler Zwillinge zur Verbesserung der Sicherheit (und für allgemeine Zwecke) derzeit begrenzt. Ein echter digitaler Zwilling benötigt kontinuierlich hochauflösende Daten. Ein solcher Datenstrom hat verschiedene Quellen und ändert sich während des Lebenszyklus des Systems. Zunächst können die Daten aus Konstruktions- und Entwicklungswerkzeugen stammen; später werden sie vom System während seines Betriebs im Feld generiert. Daten mit ausreichend hoher Auflösung und in ausreichender Menge (Stichwort Big Data) sind der Schlüssel für viele Anwendungsfälle des digitalen Zwillings. In der Forschung gibt es viele Testumgebungen, die Simulationstechniken verwenden, um ein reales Gegenstück zu imitieren [2]. Es ist jedoch schwierig, eine Bewertung zu finden, die wirklich zeigt, wie genau sie ihr reales Gegenstück nachbilden [3]. Die Suche nach einer Methode, mit der eine ausreichend hohe Datenauflösung (bekannt als Fidelity) erreicht werden kann, ist eine Forschungsfrage, die – zumindest im Moment – noch nicht gelöst ist. Dies sollte bei der Betrachtung möglicher Anwendungsfälle für digitale Zwillinge für die OT-Sicherheit berücksichtigt werden [4].

Abb. 1: Simulation des Fraunhofer AISEC, die zur Untersuchung digitaler Zwillinge verwendet wird.

Schritt für Schritt zum Ziel

Da digitale Zwillinge derzeit noch selten sind, können bei ihrer Entwicklung verschiedene Methoden in Betracht gezogen werden [5]. Unser Ziel sind Entwicklungen hin zu digitalen Zwillingen, die für die OT-Security von Nutzen sind.

Da nicht alle Teile eines komplexen Systems für die Untersuchung eines bestimmten Anwendungsfalls gleichermaßen relevant sind, können verschiedene Ebenen der Datenauflösung auf verschiedene Systemkomponenten angewendet werden. Ein Beispiel hierfür sind Penetrationstests von – wie in Abbildung 2 dargestellten – speicherprogrammierbaren Steuerungen (SPS). Das Ziel, dass die SPS-Zwillinge das reale Gerät möglichst genau nachahmen, kann z. B. mit Techniken wie Emulation oder Virtualisierung erreicht werden. Um digitale Zwillinge für industrielle Umgebungen entstehen zu lassen, sind jedoch in Zukunft weitere Fortschritte bei der Erfassung großer Datenmengen nötig.

Abb. 2: OT-Ausstattung am Fraunhofer AISEC.

[1] Eckhart, M., & Ekelhart, A. (2019). Digital twins for cyber-physical systems security: State of the art and outlook. Security and Quality in Cyber-Physical Systems Engineering, 383-412.

[2] Ani, U. P. D., Watson, J. M., Green, B., Craggs, B., & Nurse, J. R. (2021). Design Considerations for Building Credible Security Testbeds: Perspectives from Industrial Control System Use Cases. Journal of Cyber Security Technology,5(2), 71-119.

[3] Kayan, H., Nunes, M., Rana, O., Burnap, P., & Perera, C. (2022). Cybersecurity of industrial cyber-physical systems: a review. ACM Computing Surveys (CSUR), 54(11s), 1-35.

[4] Giehl, A., Wiedermann, N., Gholamzadeh, M. T., & Eckert, C. (2020, August). Integrating security evaluations into virtual commissioning. In2020 IEEE 16th International Conference on Automation Science and Engineering (CASE)(pp. 1193-1200). IEEE.

[5] Jones, D., Snider, C., Nassehi, A., Yon, J., & Hicks, B. (2020). Characterisingthe Digital Twin: A systematic literature review.CIRP Journal of Manufacturing Science and Technology,29, 36-52.

Weitere Informationen
Author
Autorenfoto_Giehl
Alexander Giehl

Alexander Giehl arbeitet seit 2013 am Fraunhofer AISEC, wo er sich auf die Verbesserung der Cybersicherheit durch Modellierung und Simulation spezialisiert hat. Seine Schwerpunkte sind sichere eingebettete Systeme, Sicherheit in der Fertigung und in der Automobilindustrie, digitale Zwillinge sowie allgemeine Cybersecurity und Managementsysteme. Darüber hinaus leitete er das vom Bundesministerium für Bildung und Forschung (BMBF) geförderte Forschungsprojekt »IUNO Insec« zur Entwicklung von Cybersecurity-Lösungen für KMU.

Most Popular

Keinen Beitrag verpassen?

Bitte geben Sie Ihre E-Mail-Adresse ein, um keinen Blog-Beitrag zu verpassen.
Bitte füllen Sie das Pflichtfeld aus.
Bitte füllen Sie das Pflichtfeld aus.
Bitte füllen Sie das Pflichtfeld aus.

* Pflichtfeld

* Pflichtfeld

Mit dem Ausfüllen des Formulars akzeptieren Sie unsere Datenschutzerklärung.

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert

Weitere Artikel

ChatGPT – neues Lieblingstool für Hacker?

Der KI-Software ChatGPT wird einiges zugetraut: Zeitungsartikel soll sie schreiben, Abschlussarbeiten verfassen – oder Malware programmieren. Entwickelt sich mit ChatGPT ein neues Tool, mit dem Hacker und Cyberkriminelle noch einfacher Schadsoftware erstellen können? Institutsleiterin Prof. Dr. Claudia Eckert und KI-Experte Dr. Nicolas Müller ordnen das Bedrohungspotential durch ChatGPT für die digitale Sicherheit ein.

Weiterlesen »

Mit Fuzzing Schwachstellen in der Wi-Fi-Kommunikation finden

Fuzzing ist eine automatisierte Methode, um Software zu testen. Dabei werden ungültige, fehlerhafte oder unerwartete Eingaben eingegeben, um Fehler aufzudecken. Unsere Kollegin Katharina Bogad aus der Abteilung Secure Operating Systems nutzt Fuzzing, um Security-Schwachstellen in eingebetteten Wi-Fi-Geräten aufzuspüren.
Im Blogartikel gibt unsere Expertin Einblicke in das automatische (Fuzz-)Testen von 802.11-Firmware und -Treibern.
Sie erklärt, warum es notwendig ist, eine drahtlose Verbindung willkürlich zu ändern, und untersucht die Hardware- und Softwareanforderungen dafür. Darüber hinaus erläutert sie, wie man den Monitormodus für passives Hören und Frame-Injection verwendet, und schließt mit einem Überblick verschiedener Fallstricke der Methode.

Weiterlesen »

KI – es ist nicht alles Gold, was maschinell lernt

Machine Learning erscheint als der neue Heilsbringer: Mit zunehmendem Enthusiasmus wird darauf vertraut, dass selbst die komplexesten Probleme durch eine Künstliche Intelligenz (KI) gelöst werden können. Ergebnisse aus dem Labor befördern diese Erwartung. Die Erkennung einer Covid-19-Infektion mittels Röntgenbildern oder sogar Sprache, Autonomes Fahren, automatische Deepfake-Erkennung – all das ist mit KI in Laborbedingungen möglich. Doch wenn diese Modelle in die Realität transferiert werden, ist die Performance oft ungenügend. Woran liegt das? Was macht es so herausfordernd, im Labor funktionsfähiges Machine Learning in reale Umgebungen zu übertragen? Und wie können mit Blick auf den Realitäts-Check robustere Modelle gebaut werden? Dieser Blog-Beitrag hinterfragt wissenschaftliche Machine-Learning-Modelle und skizziert mögliche Wege auf, die reale Treffsicherheit von KI zu erhöhen.

Weiterlesen »