Den vollständigen Blog-Beitrag finden Sie auf Englisch hier:
»Anomaly Detection with Quantum Machine Learning – Identifying Cybersecurity Issues in Datasets«
Den vollständigen Blog-Beitrag finden Sie auf Englisch hier:
»Anomaly Detection with Quantum Machine Learning – Identifying Cybersecurity Issues in Datasets«
Verstöße gegen Datenschutzbestimmungen und Eingriffe in die Privatsphäre sorgen immer wieder für Schlagzeilen. Oft sind reaktive Maßnahmen nicht weitreichend genug, um persönliche Daten in Unternehmen und öffentlichen Einrichtungen zu schützen. Datenschutzbewusste Organisationen nutzen daher einen etablierten Software-Entwicklungsprozess, der systematische Schutzmaßnahmen umfasst. Dazu gehören die Auswahl von Technologien zur Verbesserung des Datenschutzes, die Analyse potenzieller Bedrohungen sowie die kontinuierliche Neubewertung von Risiken während der Programmlaufzeit. In diesem Blogbeitrag geben wir einen Überblick, wie datenschutz- und privacyfreundliche Software entwickelt und betrieben werden kann. Dabei konzentrieren wir uns auf risikobasiertes Privacy Engineering als Basis für »Privacy by Design«.
Für die Sicherheit von eingebetteten Systemen muss die Integrität und Authentizität der Software geprüft werden – z. B anhand von Signaturen. Gezielte Hardware-Angriffe ermöglichen jedoch die Übernahme des Systems mit Schadsoftware. Welchen Risiken sind moderne kryptografische Implementierungen ausgesetzt? Welche Gegenmaßnahmen sind zu ergreifen?
Zur Beantwortung dieser Fragen führte das Fraunhofer AISEC im Auftrag des Bundesamts für Sicherheit in der Informationstechnik (BSI) eine Studie zu Laser-basierten Fehlerangriffen auf XMSS durch. Im Fokus steht ein hash-basiertes, quantensicheres Schema für die Erstellung und Überprüfung von Signaturen, das auf dem Winternitz One-Time-Signature-Verfahren (WOTS) basiert.
Seit der Veröffentlichung von ChatGPT hat die Popularität des maschinellen Lernens (ML) immens zugenommen. Neben der Verarbeitung natürlicher Sprache (NLP) ist die Erkennung von Anomalien ein wichtiger Zweig der Datenanalyse, dessen Ziel es ist, auffällige und vom restlichen Datensatz abweichende Beobachtungen oder Ereignisse zu identifizieren. Am Fraunhofer AISEC forschen Cybersecurity-Experten an Methoden des Quantum Machine Learning (QML) zur Erkennung von Anomalien, um Cybersicherheitsprobleme in Datensätzen zu erkennen. Der Blogbeitrag zeigt zwei Ansätze: Die Klassifizierung von Quantenmaterie und die Berechnung von sicherheitsrelevanten Anomalien mithilfe eines Quantencomputers.