Lawrence_Dean_Android_App_Link_Issues_Cybersecurity_Blog_Fraunhofer_AISEC

Sicherheitskritische Risiken mit Android App Links

Android App Links ermöglichen die Verknüpfung von Webinhalten mit mobilen Anwendungen. Die bestehenden Systeme weisen jedoch mehrere sicherheitskritische Probleme auf – vor allem drei verschiedene Arten des Link-Hijacking. Bisher gab es kaum Informationen über den Forschungsstand hinsichtlich dieser Sicherheitslücken. Wurden sie bereits behoben und wann? Wie funktionieren unsichere Übertragungswege von Webinhalten zu mobile Anwendungen? Dieser Beitrag informiert über den Stand dieser Probleme und zeigt Wege auf, den Transfer sicherer zu gestalten.

Den vollständigen Blog-Beitrag finden Sie auf Englisch hier:

»Android App Link Risks«

Most Popular

Keinen Beitrag verpassen?

Bitte geben Sie Ihre E-Mail-Adresse ein, um keinen Blog-Beitrag zu verpassen.
Bitte füllen Sie das Pflichtfeld aus.
Bitte füllen Sie das Pflichtfeld aus.
Bitte füllen Sie das Pflichtfeld aus.

* Pflichtfeld

* Pflichtfeld

Mit dem Ausfüllen des Formulars akzeptieren Sie unsere Datenschutzerklärung.

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert

Weitere Artikel

Differentially Private Prototype Learning (DPPL): Mit Prototypen Datenschutz und Privatsphäre im Machine Learning ermöglichen

Wie kann maschinelles Lernen die Privatsphäre wahren, ohne die Fairness zu beeinträchtigen? Die prototypbasierte Methode Differentially Private Prototype Learning ermöglicht, strenge Datenschutzvorgaben einzuhalten und gleichzeitig die Genauigkeit bei der Abbildung von unterrepräsentierten Gruppen zu verbessern. Durch die Berücksichtigung von Verzerrungen gewährleistet dieser Ansatz eine ethische und integrative KI-Entwicklung ohne Leistungseinbußen.

Weiterlesen »

Multi-Party Computation in the Head – eine Einführung

Im Jahr 2016 kündigte das National Institute of Standards and Technology (NIST) einen Standardisierungsprozess für quantensichere kryptografische Primitive an. Ziel war es, sichere Schlüsselkapselungsmechanismen (KEM) und Signaturverfahren zu finden. Ein einzigartiger Ansatz war das PICNIC-Signaturverfahren, das das MPC-in-the-Head-Paradigma (MPCitH) nutzt und als besonders sicher gilt, weil es auf gut erforschten Blockchiffren und Hash-Funktionen beruht. PICNIC wurde vom NIST als alternativer Kandidat angekündigt. Daraufhin wurden viele auf PICNIC aufbauende Nachfolgeverfahren wie BBQ, Banquet und FEAST vorgeschlagen, die verschiedene Blockchiffren und Variationen des ursprünglichen Konstruktionsparadigmas verwenden. Im Jahr 2022 kündigte das NIST eine zweite Ausschreibung speziell für Signaturverfahren an. Auf dem MPC-in-the-Head-Paradigma basierende Signaturschemata wurden aufgrund der Fülle der Anträge zu einer eigenen Kategorie. Dieser Artikel erklärt die Kernidee und Funktionalität früher MPCitH-basierter Signaturverfahren und wie wir am Fraunhofer AISEC diese Konzepte nutzen.

Weiterlesen »

Wie man passende Datensätze baut, um erfolgreich Audio-Deepfakes zu erkennen

Deepfakes stellen eine erhebliche Bedrohung für die Demokratie sowie für Privatpersonen und Unternehmen dar. Sie ermöglichen unter anderem Desinformation, den Diebstahl geistigen Eigentums oder Trickbetrug. Robuste KI-Erkennungssysteme bieten eine Lösung, doch ihre Effektivität hängt entscheidend von der Qualität der zugrunde liegenden Daten ab: »Garbage in, garbage out«. Aber wie erstellt man einen Datensatz, der für die Erkennung von Deepfakes – die sich ständig weiterentwickeln – gut geeignet ist und eine robuste Detektion erlaubt? Was macht hochwertige Trainingsdaten aus?

Weiterlesen »